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To maintain blood glucose levels (BGL) in the safe range, and prevent 
complications, it is critical for insulin requiring patients to self-
administer insulin according to their fluctuating needs. Assessing 
the most appropriate dosing is complex and patients must make 
those decisions on-the-spot, using data at their disposal, personal  
knowledge and experience, and what they lack is a way to anticipate. 
Therefore, to improve glycemic control, there is a need for a system 
capable of producing reliable and personalised BGL predictions, as 
the accurate interpretation of the data is the most relevant aspect of 
the patient’s decision-making process.
At Hillo we have developed an accurate machine learning (ML)  
method to predict BGL at prediction horizons (PH) up to 2h [A]. But 
despite this good accuracy, erroneous predictions could occur and 
lead to bad decisions for the patient. There is a need to anticipate 
these events and minimize their frequency of occurence.

M A T E R I A L S  A N D  M E T H O D S

The sample included data from 14 T1DM patients: real-life 
BGL from CGM devices, carbs intakes and insulin injection data 
collected over 30 days.

B A C K G R O U N D  A N D  A I M S

R E S U L T S  A N D  D I S C U S S I O N S

To our knowledge, there is no equivalent procedure in the literature 
on which we could compare our performances presented in Table 2. 
These scores could instead be a baseline for later improvements in  
the BGL conditional density estimations.
Our density model calculates a probability to fall in zone PC+ associated 
with each BGL Predictions. We can determine a threshold above 
which predictions should be filtered. The graph in Fig. 3 shows the 
proportion of filtered predictions associated with a the proportion of 
points that still fall in zone PC+. With our data, it basically means that 
with PH=60 min, if we keep all the predictions, 1.2% of them will fall in 
zone PC+. We need to filter 8% of the predictions to have a remaining 
probability to fall in PC+ < 1%.

[A]	 S. Bidet, N. Caleca, E. Renard, T. Camalon, L. De La Brosse, M. Rehn, O. Diouri 
and J. Place. First assessment of the performance of a personalized machine 
learning approach to predicting blood glucose levels in patients with Type 1 
diabetes: The CDDIAB study. ATTD 2019.

R E F E R E N C E S

C O N C L U S I O N

We showed a method to anticipate and mitigate risky stuations. The 
density model methodology can be improved by using a different 
distribution-model and by adding a calibration step.

Performances
PH (min) NLL (log(mg/dL))

30 4.1154 ± 0.2165
60 4.7491 ± 0.2289
90 5.0504  ± 0.2394

120 5.2062 ± 0.2462

Table 2: Performances of the 
Gaussian Density Model [M ± SD]

Sample Characteristics
Group Size n = 14
M / F 6 (43%) / 8 (57%)
Age (years) 51 ± 15
HbA1c (%) 7.09 ± 0.82

Table 1: Characteristics [M ± SD, n (%)]

In the present work, patient’s data sets are splitted respecting  
time ordering between 80% for train set and 20% for test set, and we 
perform 5 folds cross-validations both for model stacking, and for all 
grid search procedures. 
We are able to build patient-specific BGL predictors. At a prediction  
time tpred, a BGL predictor try to guess the BGL value yttarget at PH 
time ttarget, depending on data available xtpred. We assume that a  
full probability distribution of possible BGL p y xt ttarget pred;^ h  exists 
at time ttarget, and we want to estimate its conditional probability 
density. We focus on a ML approach using density models. 
Let us call q y ;tpred H^ h a family of probability distributions that may 
fit y p y xt t ttarget target pred8 ;^ h, for any features xtpred. The objective is to 
give an estimation of the parameters H that best suits our target 
probability distribution. If ( )xim  is our ML multi-regressor, we can 
summarize it as follows: ( ) ( ; ( ))p y x q y xt t t ttarget pred target pred; + im , with the 
parameters m estimated using Negative Log Likelihood (NLL) as loss 
function:
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With q as a gaussian density function, we simplify a bit this  
framework, keep NLL as evaluation metric, but train 2 different  
models as described in Fig. 1:

•	A BGL predictor ( )m x  similar to the ones described in [A], that 
estimates the conditional expectation value ( )Y x yp y xEy

y
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•	A standard deviation (STD) predictor ( )xv  with the squared error 
( ( ))y f xt t

2
target pred- as the new target, that estimates the variance 
Y Y x xE Ey y ; ;-6 6 @ @.

With both mean and STD models trained, we get a conditional density 
estimator using Normal distribution. Our final density model is:
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Figure 1: 2-Steps Gaussian Density Model
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Figure 2: Parkes Zone Probability
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Figure 3: Filtering trade-off 
(PH=60 min)
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BGL predictors can be evaluated using Parkes Error Grid Analysis  
(EGA), which breaks down a scatterplot of reference and predicted 
BGL into 5 regions (A to E). The gold standard is to have less than 1% 
of points that fall in regions C, D and E, referred to as zone PC+ [A].
With the conditional BGL probability density estimation, we can 
compute a PC+ probability estimation as described in Fig. 2:
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